TERRA)UE

Advancing Earth Science

The particular and the second second second

Processing & Chaining: Applications Deployment and Execution

Fabrice Brito Terradue

> ESA EO Φ-WEEK 2021 - EOEPCA Friday - 15th October 2021

TERRA)UE

Advancing Earth Science

Earth Observation Application Package

- Previous OGC Testbeds 13-16 initiated the design of an *application package* for Earth Observation Applications in distributed Cloud Platforms
- The *application package* provides information about the software item, metadata and dependencies
- Deployed and executed within an Exploitation Platform in a service compliant with the OGC API Processes specification

By design, the Application Package defined during these testbeds targeted the deployment and execution using the OGC API Processes

- Decouple application developers from exploitation platform operators and from application consumers:
 - Focus on application development by minimizing platform specific particularities
 - Make their applications compatible with several execution scenarios
- Enable exploitation platforms to virtually support any type of packaged EO application

- Describes the data processing application by providing information about parameters, software item, executable, dependencies and metadata.
- Ensures that the application is fully portable supporting execution and automatic deployment in a Machine-To- Machine (M2M) scenario and execution in other scenarios.
- Contains an information model to allow its deployment of the application as OGC API -Processes compliant web service

The Common Workflow Language (CWL) is an open standard for describing analysis workflows and tools in a way that makes them *portable* and *scalable* across a variety of *software and hardware environments*, from workstations to cluster, cloud, and high performance computing environments.

EO Application Package Development

- Application developers create containers with their runtime environment, dependencies and application binaries
- Application developers:
 - Orchestrate the processing steps in a Directed Acyclic Graph (DAG)
 - Use fan-out or fan-in patterns at step level to exploit distributed computing resources
- The Application Package is described using the **Common Workflow Language (CWL)**

EO data flow management

- Use STAC as a data manifest for application inputs
- Use STAC as a data manifest for application outputs (metadata and results)
- Application developers have a clear method to consume EO data in their applications
- Platforms have a normalized and common specification for the data flow management

TERRA)UE

Advancing Earth Science

App. Pack. Development Environment

- The Processor Development Environment includes:
 - Integrated Development Environment (IDE): Theia
 - Exploratory tasks: Notebooks with JupyterLab
 - Container engine (e.g. docker or podman) for container build, pull, push
 - Link to Workspace (object storage, catalog, etc.)
 - Continuous Integration (CI) at repository level
- Supports the development and testing phases
- The Application Package is executed against reference data using the CWL reference runner, cwl-tool that:
 - Spawns one or more containers for each CWL step (node of the DAG)
 - Inputs, intermediary results and outputs are read/written in container volumes according to the CWL workflow

Execution on distributed processing environments - Kubernetes

- The Application Package is a way to make software portable and executable on a Kubernetes cluster
- Kubernetes is an open-source container-orchestration system for automating computer application deployment, scaling, and management providing
 - Service discovery and load balancing
 - Storage orchestration
 - Automatic bin packing
 - Batch execution
 - Horizontal scaling
 - Self-healing
 - Automated rollouts and rollbacks
- Each CWL step (node of the DAG) spaws one or more kubernetes Pods
- Inputs, intermediary results and outputs are read/written by the spawned Pods according to the CWL workflow

Deployment and Execution on Exploitation Platforms

- The Application Package can be deployed on an Exploitation Platform:
 - The Application Package is deployed
 - An OGC API Processes processing service is exposed and ready to receive execution requests
- EOEPCA's implementation of the ADES:
 - The underlying CWL runner is Calrissian
 - Kubernetes provides the processing resources
 - The Zoo project provides the OGC API Processes

Conclusion

Advancing Earth Science

Decouple application developers from exploitation platform operators and from application consumers

Provide Cloud native EO applications development environment

Provide multi-tenant, scalable and transient processing resources

TERRAJUE

Looking forward hearing from you!

https://www.terradue.com

Fabrice Brito

fabrice.brito@terradue.com

OGC Best Practice For Earth Observation Application Package https://gitlab.ogc.org/ogc/eoap-best-practice/ (TC vote on-going)

Common Workflow Language https://www.commonwl.org/

SpatioTemporal Asset Catalogs https://stacspec.org/

CWL on Kubernetes - Calrissian <u>https://github.com/Duke-GCB/calrissian</u>