
26 November 2019
ESA EO Φ-WEEK 2021 - EOEPCA

 Friday - 15th October 2021

Processing & Chaining: Applications
Deployment and Execution

Fabrice Brito
Terradue

© Terradue 2020

▪ Previous OGC Testbeds 13-16 initiated the design
of an application package for Earth Observation
Applications in distributed Cloud Platforms

▪ The application package provides information about
the software item, metadata and dependencies

▪ Deployed and executed within an Exploitation
Platform in a service compliant with the OGC API
Processes specification

Earth Observation Application Package

By design, the Application Package defined during these testbeds
targeted the deployment and execution using the OGC API Processes

© Terradue 2020

▪ Decouple application developers from exploitation
platform operators and from application
consumers:

● Focus on application development by minimizing
platform specific particularities

● Make their applications compatible with several
execution scenarios

▪ Enable exploitation platforms to virtually support
any type of packaged EO application

Application Package Drivers

© Terradue 2020

▪ Describes the data processing application by
providing information about parameters,
software item, executable, dependencies and
metadata.

▪ Ensures that the application is fully portable
supporting execution and automatic deployment in
a Machine-To- Machine (M2M) scenario and
execution in other scenarios.

▪ Contains an information model to allow its
deployment of the application as OGC API -
Processes compliant web service

Application Package Role

© Terradue 2020

● Application developers create containers with
their runtime environment, dependencies and
application binaries

● Application developers:

○ Orchestrate the processing steps in a Directed
Acyclic Graph (DAG)

○ Use fan-out or fan-in patterns at step level to
exploit distributed computing resources

● The Application Package is described using the
Common Workflow Language (CWL)

EO Application Package Development

The Common Workflow Language
(CWL) is an open standard for
describing analysis workflows and
tools in a way that makes them
portable and scalable across a
variety of software and hardware
environments, from workstations
to cluster, cloud, and high
performance computing
environments.

© Terradue 2020

● Use STAC as a data manifest for application
inputs

● Use STAC as a data manifest for application
outputs (metadata and results)

● Application developers have a clear method
to consume EO data in their applications

● Platforms have a normalized and common
specification for the data flow management

EO data flow management

© Terradue 2020

● The Processor Development Environment includes:

○ Integrated Development Environment (IDE): Theia

○ Exploratory tasks: Notebooks with JupyterLab

○ Container engine (e.g. docker or podman) for container build, pull,
push

○ Link to Workspace (object storage, catalog, etc.)

○ Continuous Integration (CI) at repository level

● Supports the development and testing phases

● The Application Package is executed against reference data using
the CWL reference runner, cwl-tool that:

○ Spawns one or more containers for each CWL step (node of
the DAG)

○ Inputs, intermediary results and outputs are read/written
in container volumes according to the CWL workflow

App. Pack. Development Environment

© Terradue 2020

● The Application Package is a way to make software portable
and executable on a Kubernetes cluster

● Kubernetes is an open-source container-orchestration system
for automating computer application deployment, scaling, and
management providing

○ Service discovery and load balancing
○ Storage orchestration
○ Automatic bin packing
○ Batch execution
○ Horizontal scaling
○ Self-healing
○ Automated rollouts and rollbacks

● Each CWL step (node of the DAG) spaws one or more
kubernetes Pods

● Inputs, intermediary results and outputs are read/written by
the spawned Pods according to the CWL workflow

Execution on distributed processing
environments - Kubernetes

© Terradue 2020

● The Application Package can be deployed on an
Exploitation Platform:

○ The Application Package is deployed

○ An OGC API Processes processing service is
exposed and ready to receive execution requests

● EOEPCA’s implementation of the ADES:

○ The underlying CWL runner is Calrissian

○ Kubernetes provides the processing resources

○ The Zoo project provides the OGC API Processes

Deployment and Execution on
Exploitation Platforms

© Terradue 2020

Decouple application developers from
exploitation platform operators and from
application consumers

Provide Cloud native EO applications
development environment

Provide multi-tenant, scalable and transient
processing resources

Conclusion

✅

✅

✅

Looking forward
hearing from you!

https://www.terradue.com

Fabrice Brito

fabrice.brito@terradue.com

© Terradue 2020

OGC Best Practice For Earth Observation Application
Package
https://gitlab.ogc.org/ogc/eoap-best-practice/ (TC vote on-going)

Common Workflow Language
https://www.commonwl.org/

SpatioTemporal Asset Catalogs
https://stacspec.org/

CWL on Kubernetes - Calrissian
https://github.com/Duke-GCB/calrissian

References

https://gitlab.ogc.org/ogc/eoap-best-practice/
https://www.commonwl.org/
https://stacspec.org/
https://github.com/Duke-GCB/calrissian

